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Abstract

A complex trait like crop yield is determined by its component traits. Multivariable conditional
analysis in a general mixed linear model is helpful in dissecting the gene expression for the complex
trait due to different effects, such as environment, genotype, and genotype× environment interaction.
A recursive approach is presented for constructing a new random vector that can be equivalently used to
analyze multivariable conditional variance components and conditional effects. End-of-season plant
mapping data, including lint yield and three yield components for nine cultivars of upland cotton
(Gossypium hirsutumL.) were used to detect the conditional variance components and conditional
effects using this new approach, which can help identify genotypes to be used in selection studies.
© 2004 Elsevier B.V. All rights reserved.

1. Introduction

Gene expression for a complex trait depends on the joint contribution of its component
traits, as well as other factors. In crops, for example, a complex trait like yield is determined
by several yield components. The existence of correlations between a complex trait and its
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components could be an indication of gene association or pleiotropy (Kebede et al., 2001;
Dilday et al., 1990).

Correlation analysis, multiple linear regression analysis, and path analysis have been
commonly used to detect the relationships between a complex trait and its components
(Bora et al., 1998; Ball et al., 2001; Cramer and Wehner, 2000; Samonte et al., 1998). Cor-
relation analysis can only detect simple phenotypic relationship between a complex trait
and each of its component traits, rather than the relative contribution of each individual
component trait. Multiple linear regression analysis can reveal single or joint contributions
of component traits to the complex trait. Path analysis (Wright, 1920) can divide the simple
correlation coefficients into direct and indirect effects of component traits on the target
trait. Both path analysis and multiple linear regression analysis have several shortcomings.
First, the magnitudes of contribution coefficients are influenced by the number of com-
ponent traits for both methods. Second, multiple linear regression analysis is based on the
assumption that all explanatory variables are fixed, but, in most cases, both the complex trait
and its component traits are random. Thus, regarding the component traits as explanatory
variables, ignoring their random error in many multiple linear regression analyses, violates
this basic assumption.Jobson (1991)proposed the conditional multiple linear regression
method based on multiple normal condition distribution theory. In an experimental design
or a complex genetic design, both a complex trait and its component traits may follow the
same mixed linear model; however, these methods cannot partition phenotypic contribu-
tion from its component traits into different parts due to genetic, or environmental effects.
Using a mixed linear model approach, the total phenotypic covariance can be partitioned
into different covariance components between pairs of traits (Zhu, 1989; Wu et al., 1995).
This, however, can only detect relationships due to effects such as genetic and non-genetic
parts.

Conditional probability models can be used to detect extra variation (conditional vari-
ances) without the influence of the given variables (Graybill, 1976; Krzanowski, 1988).
Based on the conditional variance, the variation due to the given variables can be obtained.
The expectation and the variance–covariance matrix for a conditional random vector can
be derived (Graybill, 1976; Krzanowski, 1988); however, the conditional variance compo-
nents in a mixed linear model are not directly obtainable.Zhu (1995)proposed a method that
could be used to analyze the conditional effects and the conditional variance components to
explore gene expression for single developmental traits. This conditional model approach
has been applied in the study of developmental genetics in crops (Zhu, 1995; Yan et al.,
1998) and mice (Atchley and Zhu, 1997). The conditional model approach also helps to
analyze the contribution of each component trait to a complex trait (Zhu, 1995); however,
this conditional approach can only analyze single-variable conditional variance components
and conditional random effects. According to multivariate distribution theory, multivariable
conditional expectation and variance–covariance matrix can be easily derived by combining
mixed linear approaches and classical methods (Graybill, 1976; Krzanowski, 1988); how-
ever, the multivariable conditional random effects and variance components still cannot be
derived directly. It is also computationally difficult to directly use the traditional method
(Graybill, 1976; Krzanowski, 1988) and the conditional model approach (Zhu, 1995) to
analyze multivariable conditional variance components and random effects, especially for
complicated genetic models with large sample size. An approach that can analyze multi-
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variable conditional variance components and random effects under a general mixed linear
model with less computational intensity would be highly desirable.

A recursive approach is presented for deriving a random vector that can be equivalently
used to detect multivariable conditional variance components and random effects under a
general mixed linear model. Statistical methods are also suggested for multivariable con-
ditional analysis. Data for lint yield and three lint yield components of upland cotton are
used to illustrate this new method.

2. Methodology

2.1. Derivation of independent variables

Suppose there are two normally distributed vectors that follow the same mixed linear
model:

y(i) = Xb(i) +
r∑

u=1

Uueu(i) ∼ N

(
Xb(i),V(i) =

r∑
u=1

�2
u(i)UuUT

u

)
, i = 1, 2, (1)

where,y(i) is ann × 1 observations on response variablei, X is the design information
matrix for the fixed effect vectorb(i), Uu is the design matrix for the random effect vector
eu(i), eu(i) ∼ N(0,�2

u(i)Iu).

Suppose
(
y(1)

y(2)

)
∼ N

((
Xb(1)

Xb(2)

)
,�(1,2)

)
, where�(1,2) =

(
V(1)

C(2,1)

C(1,2)

V(2)

)
, andC(1,2) is the

covariance matrix betweeny(1) andy(2) and is expressed as follows:

C(1,2) =
r∑

u=1

�u(1,2)UuUT
u (2)

where�u(1,2) is the covariance component betweeny(1) andy(2) for uth random effect. The
covariance components between pairs of traits can be estimated by the method suggested
by Zhu and Weir (1994).

The conditional distribution ofy(2), giveny(1), is defined asy(2|1), which can be expressed
in terms of matrices and vectors as

y(2|1) = Xb(2|1) +
r∑

u=1

Uueu(2|1), (3)

y(2|1) is also normally distributed with mean

Xb(2) + C(2,1)V
−1
(1)(y(1) − Xb(1)) (4)

and variance–covariance matrix

V(2) − C(2,1)V
−1
(1)C(1,2) =

r∑
u=1

�2
u(2|1)UuUT

u, (5)

where,eu(2|1) and�2
u(2|1) are the conditional vector random effects and variance component

for the uth random effect, respectively. Based on Eq. (5), the conditional variance and
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covariance matrix ofy(2), giveny(1), is clear; however, the conditional variance components
and the conditional random effects cannot be derived. A new vector was suggested byZhu
(1995)for analyzing conditional effects and their conditional variance components.

Let y∗
(2|1) = y(2) − C(2,1)V

−1
(1)(y(1) − Xb(1)), (6)

which is independent ofy1 with mean of

Xb∗
(2|1) = E(y∗

(2|1)) = Xb(2) − C(2,1)V
−1
(1)(y(1) − Xb(1)) (7)

and the same variance–covariance matrix as that ofy(2), giveny(1) (see appendix).
The new vectory∗

(2|1) can be expressed by the same mixed linear model in Eq. (1), as
follows:

y∗
(2|1) = Xb∗

(2|1) +
r∑

u=1

Uue∗
u(2|1) ∼ N

(
Xb∗

(2|1),V
∗
(2|1) =

r∑
u=1

�∗2
u(2|1)

2
UuUT

u

)
, (8)

�∗2
u(2|1) ande∗

u(2|1) in (8) are equivalent to the conditional variance components�2
u(2|1) and

the conditional effectseu(2|1), respectively.
Now we extend the result to the case ofp (p > 2) random vectors. If thep (p > 2) random

vectors have a multiple joint normal distribution and each follows the same mixed linear
model, the conditional vectory(p) ony(1), y(2), …,y(p−1) is defined asy(p|1,2,...,p−1), which
can be expressed in terms of matrices and vectors,

y(p|1,2,...,p−1) = Xb(p|1,2,...,p−1) +
r∑

u=1

Uueu(p|1,2,...,p−1), (9)

wherey(p|1,2,..,p−1) is normally distributed with expectation

E(y(p|1,2,..,p−1)) = Xb(p) + (
C(p,1) C(p,2) . . .C(p,p−1)

)
×

−1∑
(1,2,...,p−1)

( y(1) − Xb(1)

. . .

y(p−1) − Xb(p−1)

)
(10)

and variance–covariance matrix

V(p|1,2,...,p−1) = V(p) − (
C(p,1) C(p,2) . . .C(p,p−1)

)
×

−1∑
(1,2,...,p−1)

(
C(1,p) C(2,p) . . .C(p−1,p)

)T

=
r∑

u=1

�2
u(p|1,2,...,p−1)UuUT

u (11)
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whereC(i,j) = cov(y(i), y(j)) =∑r
u=1�u(i,j)UuUT

u is a covariance matrix betweeny(i) and
y(j);

∑
(1,2,...,p−1)

=var

( y(1)

. . .

y(p−1)

)
=
( V(1) . . . C(1,p−1)

. . . . . . . . .

C(p−1,1) . . . V(p−1)

)

is a(p − 1)n × (p − 1)n symmetric matrix.
The new vector in (12) extended from (5) (Zhu, 1995) is independent of all (p − 1)

conditional variables with the same multiple conditional variance and covariance matrix as
in (11).

y+
(p|1,2,...,p−1)

= y(p) − (
C(p,1) C(p,2) . . .C(p,p−1)

) −1∑
(1,2,...,p−1)

( y(1) − Xb(1)

. . .

y(p−1) − Xb(p−1)

)
. (12)

Direct use of Eq. (12) to obtain the new independent variable is computationally intensive
due to the large size of matrix

∑
(1,2,...,p−1). To reduce computational intensity, another new

random vector, which is also independent of (p − 1) conditional random variables, can be
obtained recursively as follows,

y∗
(p|1,2,...,p−1) = y∗

(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)

(
y∗
(p−1|1,2,...,p−2)

−Xb∗
(p−1|1,2,...,p−2)

)

=Xb∗
(p|1,2,...,p−1) +

r∑
u=1

Uue∗
u(p|1,2,...,p−1), (13)

where

var(y∗
(p|1,2,...,p−1))

= V(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)C(p−1,p|1,2,...,p−2)

=
r∑

u=1

�∗2
u(p|1,2,...,p−1))UuUT

u (14)

y∗
(p|1,2,...,p−2) = y∗

(p|1,2,...,p−3) − C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)

×
(
y∗
(p−2|1,2,...,p−3) − Xb∗

(p−2|1,2,...,p−3)

)
,

y∗
(p−1|1,2,...,p−2) = y∗

(p−1|1,2,...,p−3) − C(p−1,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)

×
(
y∗
(p−2|1,2,...,p−3) − Xb∗

(p−2|1,2,...,p−3)

)
,

V(p−1|12...p−2) = V(p−1|1,2,...,p−3) − C(p−1,p−2)|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)

C(p−2,p−1)|1,2,...,p−3), which is the multivariable conditional variance–covariance matrix
for y(p−1|1,2,...,p−2);
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C(p−1,p|1,2,...,p−2) = C(p−1,p|1,2,..,p−3) − C(p−1,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)

C(p−2,p|1,2,...,p−3), which is the conditional covariance matrix betweeny(p−1|1,2,...,p−2)

andy(p|1,2,...,p−2).
It can be shown that the new random vector in formula (13) is independent ofy(1),

y(2), . . . , y(p−1), with the same variance–covariance matrix as in (11) (see appendix). Thus,
�∗2

u(p|1,2,...,p−1) in (14) ande∗
u(p|1,2,...,p−1) in (13) can be regarded as equivalent to the condi-

tional variance components�2
u(p|1,2,...,p−1) and the conditional effect vectoreu(p|1,2,...,p−1).

In practice, variance and covariance components and fixed effects are unknown, so estima-
tion of these parameters is needed for construction of the independent variables.The variance
components can be obtained by mixed linear model approaches, such as restricted maxi-
mum likelihood (REML) (Patterson and Thompson, 1971) and minimum norm quadratic
unbiased estimation (MINQUE) (Rao, 1971; Searle et al., 1992). The covariance compo-
nents in a mixed linear model can be estimated by the method proposed byZhu and Weir
(1994)and the fixed effects can be obtained by the generalized least-squares estimation
methodb̂ = (XTV̂ −1X)XTV̂ −1y.

2.2. Detecting multivariable conditional variance components and effects

Once the new variables of a target trait independent of multiple component traits have
been constructed, mixed linear model approaches can be used to estimate the multivariable
conditional variance components (Hartley and Rao, 1967; Patterson and Thompson, 1971;
Rao, 1971). Multivariable conditional random effects can be predicted by the best linear
unbiased prediction (BLUP) method (Henderson, 1963) if the variance components are
known; however, in practice, the variance components usually are estimated from samples,
thus, the adjusted unbiased prediction (AUP) (Zhu, 1993) or linear unbiased prediction
(LUP) (Zhu and Weir, 1994) are suggested.

3. Application

3.1. Materials and methods

Bolls unit-area−1, lint percentage, and boll size are three important yield components
of upland cotton. End-of-season plant mapping data from nine upland cotton commercial
cultivars (Shoemaker, 2000) were used to detect multivariable conditional variance compo-
nents and conditional random effects. The experiments were conducted at the Plant Science
Research Center, Mississippi State, MS, in 1997 and 1998. The experimental design was
a randomized complete block with six replications in each of 2 years. Plants were grown
in a Marietta Silty Clay Loam soil in 1997 and Marietta Sandy Clay Loam soil in 1998.
Samples consisting of 25 bolls plot−1 were harvested by hand and ginned to determine
lint percentage. The total number of bolls and seed cotton yield within a 3-meter section
of row were recorded; boll size was computed as total seed cotton yield/total boll num-
ber in the 3 m section; lint yield was calculated based on total seed cotton yield within
the 3 m section. A genotype with genotype× environment interaction model was used
for data analysis. The linear model for each trait in terms of matrices and vectors was
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Table 1
Estimated unconditional and conditional variance components

LPa,b BNb BSb LYb LY|LP LY|BN LY|BS LY|LP LY|LP LY|BN LY|LP&
&BN &BS &BS BN&BS

VG 1.51** 802** 0.29** 398* 208** 351** 211* 213** 201* 110** 34*
VGE 0.66** 495** 0.03** 1144** 646** 249** 1047** 248** 599** 45* 55**
Ve 3.11** 781** 0.03** 2334** 2095** 449** 2222** 198** 2018** 259** 55**
VP 5.27** 2077** 0.35** 3876** 2949** 1049** 3480** 659** 2818** 414** 143**

*,** significant at 0.05 and 0.01probability levels, respectively.
aLP=lint percentage, BN=boll number per unit area, BS= boll size, LY= lint yield.
bUnconditional variances. Remaining are conditional variances.

as follows:

y = 1� + UEeE + UGeG + UGEeGE + UBeB + e= Xb +
5∑

u=1

Uueu, (15)

where� is the fixed population mean;eE is the random environmental effect vector,eE ∼
N(0,�2

E IE); UE is the design matrix foreE ; eG is the random genotype effect vector,
eG ∼ N(0,�2

GIG); UG is the design matrix foreG; eGE is the randomG × E interaction
effect vector,eGE ∼ N(0,�2

GE IGE); UGE is the design matrix foreGE ; eB is the random
block effect vector,eB ∼ N(0,�2

B IB); UB is the design matrix foreB ; ande is the random
error,e∼ N(0,�2I ).

Conditional and unconditional variance and covariance components were estimated by
MINQUE (1) in which all prior values were set as 1.0 (Zhu, 1989). Conditional and uncon-
ditional effects were predicted by AUP (Zhu, 1993). The phenotypic variance was defined
as follows:Vp = VG + VGE + Ve where,VG = �2

G, VGE = �2
GE , andVe = �2

e × 1.0 −
�2

u(LY |component(s))/�
2
u(LY ) is defined as contribution ratioCRu(component(s)−>LY ) from single

or multiple yield components foruth random effect (Zhu, 1995). eu(LY ) −eu(LY |component(s))
is defined asuth net contributed effecteu(component(s)−>LY ) from single or joint yield compo-
nents to lint yield. A resampling (jackknifing) method was applied to calculate the standard
error (SE) for each statistics by successive removal of each block within each environment
(Miller, 1974). There were six replications in 1997 and 1998 (degrees of freedom= 11).
Thet-test was used to evaluate the significance of each statistics.

3.2. Results

All correlation coefficients between the constructed random variables of lint yield and
conditioned yield component(s) ranged between−0.001 and 0.001. The results suggested
that the constructed random variables were independent of yield component traits, thus
they were appropriate for multivariable conditional analysis. Lint yield and all three lint
yield components were controlled by both genotypic effects andG × E interaction effects
(Table 1). Lint yield was mainly affected byG×E interaction effects, while all component
traits were mainly affected by genotypic effects. Compared with the unconditional variance
components and phenotypic variance, both the conditional variance components and the
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Table 2
Contribution ratios (CR) from yield component(s) to lint yield due to different effects

Contribution ratio LPa BN BS LP&BN LP&BS BN&BS LP&BN&BS

CRG(component(s)−>LY ) 0.48** 0.12 0.47** 0.46** 0.50** 0.73** 0.91**
CRGE(component(s)−>LY ) 0.44** 0.78** 0.09 0.78** 0.48** 0.96** 0.95**
CRe(component(s)−>LY ) 0.10* 0.81** 0.05 0.92** 0.14** 0.89** 0.98**
CRP(component(s)−>LY ) 0.24** 0.73** 0.10* 0.83** 0.27** 0.89** 0.96**

*,** are significant at probability levels of 0.05 and 0.01, respectively.
aLP=lint percentage, BN=boll number of per unit area, and BS= boll size.

phenotypic variance of lint yield on yield component trait(s) decreased correspondingly.
Phenotype contribution ratios of lint percentage and boll size to lint yield were small;
however, a large contribution ratio of 47% due to genotypic effect for boll size was detected
(Table 2). No significant contribution ratio due toG×E or residual was detected for boll size.
Large contribution ratios due to genotype effect (48%) andG×E interaction effect (44%),
and a small contribution ratio due to residual were detected for lint percentage. Phenotypic
contribution ratio of boll number to lint yield was large (73%), while contribution ratio due
to G × E interaction effect and residual were approximately 80%. The contribution ratio
for lint percentage and boll size due to each effect was similar to that for lint percentage.
The phenotypic contribution ratios for lint percentage and boll number, and for boll size and
boll number were greater than 80%. Joint genotypic andG × E contribution ratios for lint
percentage and boll number were similar to those for boll size and boll number. Joint residual
contribution ratios for the same two pairs of yield components were approximately 90%.
Joint phenotypic contribution ratio and contribution ratio due to each effect from all three
component traits were numerically greater than 90%. This suggested that lint percentage,
boll number unit-area−1, and boll size can be used to predict lint yield, phenotypically and
genetically.

Predicted genotype andG × E effects of lint yield and contributions of genotype and
G × E effects to lint yield are summarized inTable 3. There was a negative contribution
of genotypic effect for FM832 due to boll number but a positive contribution of genotypic
effect for FM975. This indicated that the small boll number for FM832 made a negative
genotypic contribution to lint yield, large boll number for FM975 made a positive genotype
contribution to lint yield, but the remaining cultivars did not show a significant genotypic
contribution to lint yield. Genotypic effect of boll size contributed negatively in FM989
but positively in IF1005. Joint genotypic contribution effects due to lint percentage and
boll number were negative for DP50 and FM832 but positive for FM975. Joint genotypic
contribution effects due to boll size and boll number were negative for FM989 but positive
for IF1005. TheG × E contribution effects due to boll number, lint percentage and boll
number, boll size and boll number, and three yield components were significant and similar
to G × E effects for FM989 and IF1005 in both years. This indicated thatG × E joint
contributed effects to lint yield were mainly from boll number rather than the other two
yield components for these two cultivars. Numerically, the joint genotypic andG × E

contribution effects due to the three yield components were similar to the unconditional
effects of lint yield for each cultivar.



J. Wu et al. / Computational Statistics & Data Analysis 50 (2006) 285–300 293

Table 3
Unconditional genetic effects of lint yield and contribution genetic effects of yield component(s) to lint yield

Cultivar Main effects (g)

Gi Gi(component(s)−>LY )

LYa LP BN BS LP&BN LP&BS BN&BS LP&BN&BS

DP50 −3.49 −22.85 1.07 −2.39 −15.98* −23.07 5.44 −8.48
FM832 −9.31 −12.75 −25.81** −11.51 −23.50* −11.43 −0.34 −3.37
FM963 49.46 27.86 10.61 19.53 24.55 28.82 33.96 43.32
FM975 −0.96 11.87 18.73* 4.77 20.06** 11.52 7.85 8.74
FM989 −11.67 −0.24 −14.37 −8.58† −8.59 −2.20 −17.94* −12.52
IF1000 −6.41 5.36 −0.05 −1.59 4.31 4.46 −16.38 −9.88
IF1005 10.75 1.99 17.49 10.05+ 9.88 3.07 21.75+ 14.35
SG125 −2.80 3.89 −3.34 −1.14 1.80 4.56 −10.87 −5.12
SG501 −25.55 −15.14 −4.33 −9.13 −12.52 −15.73 −23.47 −27.03

G × E.interaction effect (g)

GEi GEi(component(s)−>LY )

1997

DP50 −10.93 −45.78** −9.15 −0.77 −22.56 −43.56** 2.81 −6.96
FM832 12.67 3.19 −4.27 −5.90 −4.05 2.35 10.87 6.86
FM963 42.39+ 25.53** 8.33 0.33 13.98 29.51** 30.21 36.76†
FM975 0.75 30.04** 29.65 10.90* 34.33† 26.97** 16.47 18.84
FM989 47.02** 11.20† 45.74** 2.88 45.74** 8.57 37.82* 39.78*
IF1000 29.34† 31.63** 15.44 0.11 20.29 36.63** 23.58 29.53†
IF1005 −49.37* −32.55** −43.13* 5.48 −47.35* −32.81** −47.18* −49.49*
SG125 −32.65† 6.45 −22.36 4.39 −17.35 4.21 −39.37 −35.58†
SG501 −16.15 −6.57 2.58 5.63† −0.06 −9.10 −12.28 −16.69

1998

DP50 7.54 18.25** 9.94 0.52 6.24 17.04** 2.42 −2.20
FM832 −24.03 −16.02* −21.84 −11.34* −21.79 −16.36* −10.17 −10.44
FM963 17.76 5.31 15.36 2.55 20.61 1.25 11.36 16.24
FM975 −0.88 −14.14 −12.03 −0.21 −13.03 −10.90 −7.31 −7.82
FM989 −58.61* −11.24 −59.67** −7.87 −54.25* −8.76 −56.08* −52.36*
IF1000 −40.32† −26.28** −20.34 1.54 −20.21 −31.22** −46.44* −44.74†
IF1005 63.34* 32.14** 64.06** 2.32 60.48* 33.03* 72.98** 67.32**
SG125 25.50† −2.68 14.78 −6.01 14.88 −0.82 23.94 25.68†
SG501 −13.37 −8.48 −13.07 −4.57 −15.90 −6.02 −13.62 −14.74

†, *, and ** are significant at probability levels of 0.10, 0.05, and 0.01, respectively.
aLP=lint percentage, BN=boll number of per unit area, BS= boll size, LY= lint yield. Column 1 is the

unconditional effect of lint yield. Remaining columns are the contribution effect of yield components on lint yield.

4. Discussion

Many traits, which are determined by multiple component traits, exhibit complex inher-
itance patterns. Dissecting gene expressions of a complex trait often requires multivariate



294 J. Wu et al. / Computational Statistics & Data Analysis 50 (2006) 285–300

analysis. The conditional regression model approach can partition the total variation of a
complex trait into variation due to the component traits and residual (Jobson, 1991). Exper-
iments are often conducted across environments with replications and the performance of
a complex trait and its component traits could be influenced by environmental conditions,
genotypes, and residuals. Conditional regression analysis does not address this complicated
situation. The major problems are that the multivariable conditional variance component,
or conditional random effects cannot be obtained directly (Zhu, 1995). In this study,Zhu’s
(1995)method was extended to construct a new vector, which could be used to detect equiv-
alent conditional variance components and conditional random effects. Second, a recursive
method was provided to derive the new vector independent of multiple conditional variables
for a general mixed linear model to reduce computations based on conditional probability
theory. The major advantage of this recursive method is computational speed. There are
n3 total computations required for calculating the inverse of a square matrix of dimension
n (Press et al., 1992), while there arep3n3 computations required for calculation of the
inverse matrix for conditioning onp variables with sample sizen by directly using Eq.
(12). Therefore, this method can greatly reduce the computational intensity of calculating
the inverse of a multi-fold sized matrix when the number of conditioned variables is large.
In addition, the program can integrate the Sherman–Morrison–Woodbury method (Press et
al., 1992), which can also reduce the calculations required to compute the inverse of a sparse
variance–covariance matrix with several variance components (five variance components
in the model (15)).

Through multivariate conditional analyses, both phenotypic conditional variance and
conditional genotypic effects can be partitioned into several components for a mixed linear
model. The results should provide a better understanding of gene expressions of complex
traits. In some cases, researchers are interested in the contribution to complex trait from
single or multiple component traits. With this in mind, the contribution ratio and the con-
tribution effect defined byZhu (1995)were also extended. For example, the contribution
genetic effects without influence of other related traits is useful for selecting genotypes for
use as parents in plant or animal breeding programs.

Numerically, the coefficients of determination (R2) obtained by both conditional and
unconditional multiple linear regression methods should be equivalent, although the mean
square errors are different. The phenotypic contribution ratio obtained by this method is
also equivalent to theR2 obtained by multiple regression analyses.R2 obtained by multi-
ple regression analyses were in agreement with the phenotypic contribution ratio for most
cases (Table 4). Thus, if there is only residual variance in a linear model, the multivariate
conditional analysis will collapse to a multiple (conditional) linear regression. In addition
to multiple conditional analyses, this approach has several other advantages over the tra-
ditional linear regression methods: (1) this method can be used to analyze data from more
complicated experimental designs, while traditional regression methodology only analyzes
phenotypic data; (2) this method can partition the phenotypic contribution ratio into differ-
ent contribution ratios for a specific mixed linear model, while the traditional regression
methods cannot; and (3) the contribution effects, which are useful in selection studies, can
be predicted.

The models in this application section can be extended to other mixed linear models.
Based onCockerham’s (1980)genetic model, for example, the model can be extended to
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Table 4
Coefficients of determination (R2) obtained by conditional and unconditional linear regression analyses

LPa BN BS LP&BN LP&BS BN&BS LP&BN&BS

Unconditionalb 0.24 0.68 0.02 0.72 0.24 0.91 0.97
Conditionalc 0.24 0.68 0.02 0.72 0.24 0.90 0.96

aLP=lint percentage, BN=boll number per unit area, and BS= boll size.
bUsing regular linear regression model.
cUsingJobson (1991)model.

additive-dominance, additive dominance additive× additive, or to animal genetic models
(Zhu and Weir, 1994).

The detection of conditional variances and conditional effects is based on the constructed
random variable, which is phenotypically independent of the component trait(s); however,
it still remains unproven if each effect and variance component is theoretically independent.
Based on the analysis of covariance components by the approach proposed by Zhu (1992),
the correlation coefficient for each effect between the new constructed variables and each of
the yield component traits was approximately zero and insignificant (data not presented). In
addition, this method for constructing a new independent random variable for multivariable
conditional analysis is based on the assumption of normal distribution. This method may
also be applicable to other types of distributions. Based on the central limit theorem, other
distributions can be converted to normal distributions if large sample sizes are used. In some
cases, estimating multivariable conditional fixed effects is also important. One alternative
way to do this is to treat the fixed effects (i.e., treatment effects) as random and conditional
fixed effects could be predicted by the LUP (Zhu and Weir, 1994) or AUP (Zhu, 1993)
approach.

Appendix

Let y(1), y(2), . . . , y(p) be jointly normally distributed forp�2.

y∗
(p|1,2,...,p−1) = y∗

(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)

×
(
y∗
(p−1|1,2,...,p−2) − Xb∗

(p−1|1,2,...,p−2)

)
.

Then, var
(
y∗
(p|1,2,...,p−1)

)
= var

(
y(p|1,2,...,p−1)

)
and cov

(
y∗
(p|1,2,...,p−1), y(k)

)
= 0 for

k = 1, 2, . . . , (p − 1) are true.
Prove by induction:
(1) p = 2.
Let f (.) f (., .) be probability density function (PDF) and joint PDF, respectively.
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Sincef (y(2|1)) = f (y1, y2)/f (y1), thenV(2|1) = var(y(2|1)) = V(2) − C(2,1)V
−1
(1)C(1,2).

V∗
(2|1) = var(y∗

(2|1)) = var(y(2) − C(2,1)V
−1
(1)(y(1) − Xb(1)))

= var(y(2)) + C(2,1)V
−1
(1)var(y(1) − Xb(1))V

−1
(1)C(1,2)

− 2 cov(y(2),C(2,1)V
−1
(1)(y(1) − Xb(1)))

=V(2) − C(2,1)V
−1
(1)C(1,2),

soV∗
(2|1) = V(2|1),

cov(y∗
2|1, y1) = cov{y2 − C21V

−1
1 (y1 − Xb1), y1} = 0, which means new vectory∗

2|1 is
independent ofy1 with the same conditional variance–covariance matrix ofV(2|1).

It is true forp = 2.
(2) p = 3.

The PDF for conditional random vectory(3) ony(1) andy(2) can be expressed as follows:

f (y(3|1,2)) = f (y(2|1), y(3|1))/f (y(2|1)).

Following (1), we can obtainV(3|1,2) = var(y(3|1,2)) = V(3|1) − C(3,2|1)V
−1
(2|1)C(2,3|1).

Suppose two new vectorsy∗
(2|1) andy∗

(3|1) are constructed from (1). From results of (1),
we get

V∗
(3|1,2) = var(y∗

3|1,2) = var
(
y∗
(3|1) − C(3,2|1)V

−1
(2|1)

(
y∗
(2|1) − Xb∗

(2|1)

))
=V∗

(3|1) − C∗
(3,2|1)V

∗−1
(2|1)C

∗
(2,3|1)

=V(3|1) − C∗
(3,2|1)V

−1
(2|1)C

∗
(2,3|1),

since

C∗
(2,3|1) = cov(y∗

(2|1), y
∗
(3|1))

= cov{y(2) − C(2,1)V
−1
(1)(y(1) − Xb(1)), y(3) − C(3,1)V

−1
(1)(y(1) − Xb(1))}

=C(2,3) − C(2,1)V
−1
(1)C(1,3),

soC∗
(2,3|1) = cov(y2|1, y3|1) =C(2,3|1), which means that covariance matrix of new vectors

of y∗
(2|1), y

∗
(3|1) is equivalent to conditional covariance matrix betweeny(2|1) andy(3|1).

CT
(2,3|1) = C(3,2|1).

Thus,

V∗
(3|1,2) = V(3|1) − C(3,2|1)V

−1
(2|1)C(2,3|1) = V(3|1,2),

cov(y∗
(3|1,2), y(1)) = cov{(y∗

(3|1) − C(3,2|1)V
−1
(2|1)(y

∗
(2|1) − Xb∗

(2|1)), y(1)}
= cov(y∗

(3|1), y(1)) − C(3,2|1)V
−1
(2|1)cov(y∗

(2|1), y(1)) = 0.

Similarly, it can be shown that cov(y∗
(3|1,2), y(2)) = 0.

Thus, vectory∗
(3|1,2) is independent of vectorsy(1) andy(2) with the same conditional

variance–covariance matrix as forV(3|1,2).
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It is true forp = 3.
(3) Suppose for 2� t �p−1 (p�4), theresult isestablishedsuchthatvar(y∗

(p−1|1,2,...,p−2))

= var(y(p−1|1,2,...,p−2)) , cov(y∗
(p−1|1,2,...,p−2), y(k)) = 0 for k = 1, 2, . . . , (p − 2), and

cov(y∗
(p−1|1,2,...,p−3), y

∗
(p−2|1,2,...,p−3)) = C(p−1,p−2|1,2,...,p−3) are true, we will derive the

case ofp random vectors.

The PDF of conditional random vectory(p|1,2,...,p−1) can be expressed as follows:
f (y(p|1,2,...,p−1)) = f (y(p|1,2,...,p−2), y(p−1|1,2,...,p−2))/f (y(p−1|1,2,...,p−2)), then

var(y(p|1,2,...,p−1))=V(p|1,2,...,p−1) =V(p|1,2,...,p−2) −C(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)

C(p−1,p|1,2,...,p−2).
Let y∗

(p|1,2,...,p−2) and y∗
(p−1|1,2,...,p−2) be available, thus, bothy∗

(p|1,2,...,p−2) and
y∗
(p−1|1,2,...,p−2) are independent ofy(k) for k = 1, 2, . . . , (p − 2).

y∗
(p|1,2,...,p−1) = y∗

(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)

(
y∗
(p−1|1,2,...,p−2)

−Xb∗
(p−1|1,2,...,p−2)

)
,

V∗
(p|1,2,...,p−1) = var(y∗

(p|1,2,...,p−1))

= var
(
y∗
(p|1,2,...,p−2)−C(p,p−1|1,2,...,p−2)V

−1
(p−1|1,2,...,p−2)

(
y∗
(p−1|1,2,...,p−2)

−Xb∗
(p−1|1,2,...,p−2)

))
=V(p|1,2,...,p−2) − C∗

(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)C

∗
(p−1,p|1,2,...,p−2).

Note that

C∗
(p,p−1|1,2,...,p−2)

= cov
(
y∗
(p|1,2,...,p−2), y

∗
(p−1|1,2,...,p−2)

)
= cov

(
y∗
(p|1,2,...,p−3) − C(p,p−2|1,2,...,p−3)V

−1
(p−2|1,2,...,p−3)

(
y∗
(p−2|1,2,...,p−3)

−Xb∗
(p−2|1,2,...,p−3)

)
, y∗

(p−1|1,2,...,p−3)−C(p−1,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)(

y∗
(p−2|1,2,...,p−3) − Xb∗

(p−2|1,2,...,p−3)

))
= cov

(
y∗
(p|1,2,...,p−3), y

∗
(p−1|1,2,...,p−3)

)
− cov

(
C(p,p−2|1,2,...,p−3)V

−1
(p−2|1,2,...,p−3)y

∗
(p−2|1,2,...,p−3), y

∗
(p−1|1,2,...,p−3)

)
− cov

(
y∗
(p|1,2,...,p−3),C(p−1,p−2|1,2,...,p−3)V

−1
(p−2|1,2,...,p−3)y

∗
(p−2|1,2,...,p−3)

)
+ cov

(
C(p,p−2|1,2,...,p−3)V

−1
(p−2|1,2,...,p−3)y

∗
(p−2|1,2,...,p−3),

C(p−1,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)y

∗
(p−2|1,2,...,p−3)

)
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= C(p,p−1|1,2,...,p−3) − C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)

× cov
(
y∗
(p−2|1,2,...,p−3), y

∗
(p−1|1,2,...,p−3)

)
− cov

(
y∗
(p|1,2,...,p−3), y

∗
(p−2|1,2,...,p−3)

)
V−1

(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

+ C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)var(y∗

(p−2|1,2,...,p−3))

× V−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

= C(p,p−1|1,2,...,p−3) − C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

− C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

+ C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)

× V(p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

= C(p,p−1|1,2,...,p−3) − C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

− C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

+ C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p|1,2,...,p−3)

= C(p,p−1|1,2,...,p−3) − C(p,p−2|1,2,...,p−3)V
−1
(p−2|1,2,...,p−3)C(p−2,p−1|1,2,...,p−3)

= cov
(
y(p|1,2,...,p−2), y(p−1|1,2,...,p−2)

)
= C(p,p−1|1,2,...,p−2)

and

CT
(p,p−1|1,2,...,p−3) = C(p−1,p|1,2,...,p−2).

Thus,

V∗
(p|1,2,...,p−1)

= V(p|1,2,...,p−2) − C∗
(p,p−1|1,2,...,p−2)V

−1
(p−1|1,2,...,p−2)C

∗
(p−1,p|1,2,...,p−2)

= V(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V
−1
(p−1|1,2,...,p−2)C(p−1,p|1,2,...,p−2)

= var(y(p|1,2,...,p−1)) = V(p|1,2,...,p−1),

cov(y∗
(p|1,2,...,p−1), y(k))

= cov
(
y∗
(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V

−1
(p−1|1,2,...,p−2)

(
y∗
(p−1|1,2,...,p−2)

−Xb∗
(p−1|1,2,...,p−2)

)
, y(k)

)

= cov
(
y∗
(p|1,2,...,p−2) − C(p,p−1|1,2,...,p−2)V

−1
(p−1|1,2,...,p−2)

×y∗
(p−1|1,2,...,p−2), y(k)

)
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= cov
(
y∗
(p|1,2,...,p−2), y(k)

)
− C(p,p−1|1,2,...,p−2)V

−1
(p−1|1,2,...,p−2)

× cov
(
y∗
(p−1|1,2,...,p−2), y(k)

)
= 0− C(p,p−1|1,2,...,p−2)V

−1
(p−1|1,2,...,p−2)0

= 0.

Sincey∗
(p|1,2,...,p−1) can also be expressed differently such that

y∗
(p|1,2,...,p−1)=y∗

(p|2,...,p−1)−C(p,1|2,...,p−1)V
−1
(1|2,...,p−1)

(
y∗
(1|2,...,p−1) − Xb∗

(1|2,...,p−1)

)
,

which has the same conditional variance–covariance matrix as ofV(p|1,2,...,p−1) and is in-
dependent of vectory(p−1).

Therefore, it turns out that it is true for the case ofp (p > 3) random vectors.
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